题目链接:
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases. For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n. Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
Sample Output
10 25 100 100
Source
题意:
一个村庄有 n 个房子和 n-1 条双向路,每两个房子之间都有一条简单路径。
如今有m次询问。求两房子之间的距离。
PS:能够用LCA来解,首先找到u, v 两点的lca,然后计算一下距离值就能够了。
计算方法是。记下根结点到随意一点的距离dis[i],
这样ans = dis[u] + dis[v] - 2 * dis[lca(v, v)]了。
这题要用c++交。G++会爆栈!
代码例如以下:看别人的模板(tarjan 离线)
#include#include #include #include using namespace std;#define maxn 40047#define maxm 247struct node{ int to,w,next;} edge[maxn*2];int n, m; //点数,询问次数int head[maxn];int k;int fa[maxn]; //父亲结点int dis[maxn]; //到根节点距离int vis[maxn]; //是否訪问过int s[maxm]; //询问起点int e[maxm]; //询问终点int lca[maxm]; //LCA(s,e) 近期公共祖先int find(int x){ if(fa[x]!=x) return fa[x]=find(fa[x]); return fa[x];}void init(){ k = 1; memset(head,0,sizeof(head)); memset(dis,0,sizeof(dis)); memset(vis,0,sizeof(vis));}void add(int u,int v,int w){ edge[k].to = v; edge[k].w = w; edge[k].next = head[u]; head[u] = k++;}void tarjan(int u){ int i,v; fa[u] = u; vis[u] = 1; for(i = 0; i < m; i++) { if(e[i]==u && vis[s[i]]) lca[i] = find(s[i]); //若询问的两点中有一点已被訪问过。则两点的LCA则为这一点的当前父节点 if(s[i]==u && vis[e[i]]) lca[i] = find(e[i]); } for(i = head[u]; i; i = edge[i].next) { v = edge[i].to; if(!vis[v]) //若没被訪问过 { dis[v] = dis[u]+edge[i].w;//更新距离 tarjan(v); fa[v] = u;//回溯更新父节点 } }}int main(){ int t; scanf("%d",&t); while(t--) { init(); scanf("%d%d",&n,&m); int u, v, w; for(int i = 0; i < n-1; i++) { scanf("%d%d%d",&u,&v,&w); add(u,v,w); add(v,u,w); } for(int i = 0; i < m; i++) { scanf("%d%d",&s[i],&e[i]); } tarjan(1); for(int i = 0; i < m; i++) { printf("%d\n",dis[s[i]]+dis[e[i]]-2*dis[lca[i]]);//两点距离为根节点到两点距离之和-根节点到LCA距离*2 } } return 0;}
(ST在线算法 转)
#include#include #include #include using namespace std;//#pragma comment(linker, "/STACK:102400000,102400000") //不须要申请系统栈const int N = 40010;const int M = 25;int dp[2*N][M]; //这个数组记得开到2*N,由于遍历后序列长度为2*n-1bool vis[N];struct edge{ int u,v,w,next;} e[2*N];int tot,head[N];inline void add(int u ,int v ,int w ,int &k){ e[k].u = u; e[k].v = v; e[k].w = w; e[k].next = head[u]; head[u] = k++; u = u^v; v = u^v; u = u^v; e[k].u = u; e[k].v = v; e[k].w = w; e[k].next = head[u]; head[u] = k++;}int ver[2*N],R[2*N],first[N],dir[N];//ver:节点编号 R:深度 first:点编号位置 dir:距离void dfs(int u ,int dep){ vis[u] = true; ver[++tot] = u; first[u] = tot; R[tot] = dep; for(int k=head[u]; k!=-1; k=e[k].next) if( !vis[e[k].v] ) { int v = e[k].v , w = e[k].w; dir[v] = dir[u] + w; dfs(v,dep+1); ver[++tot] = u; R[tot] = dep; }}void ST(int n){ for(int i=1; i<=n; i++) dp[i][0] = i; for(int j=1; (1< <=n; j++) { for(int i=1; i+(1< <=n; i++) { int a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1]; dp[i][j] = R[a] y) swap(x,y); int res = RMQ(x,y); return ver[res];}int main(){ //freopen("Input.txt","r",stdin); //freopen("Out.txt","w",stdout); int cas; scanf("%d",&cas); while(cas--) { int n,q,num = 0; scanf("%d%d",&n,&q); memset(head,-1,sizeof(head)); memset(vis,false,sizeof(vis)); for(int i=1; i